Oracle Cloud Infrastructure (OCI) Data Science is a fully managed and serverless platform for data science teams to build, train, and manage machine learning models using OCI.
In this post we are creating notebook sessions with different compute shapes and train a Keras image classification model example published here in keras.io
After creating the different notebook sessions and installing Tensorflow, Keras and other packages needed we have run a couple of epochs of the train model phase of the image classification Keras code exmaple mentioned above.

Down here you can find the results:
mac: Epoch 1/50 586/586 [==============================] - 13255s 23s/step - loss: 0.6394 - accuracy: 0.6513 - val_loss: 0.9312 - val_accuracy: 0.5543 Epoch 2/50 76/586 [==>………………………] - ETA: 48:58 - loss: 0.5338 - accuracy: 0.7340 VM.Standard.E2.8: Epoch 1/50 586/586 [==============================] - 1454s 2s/step - loss: 0.6918 - accuracy: 0.6141 - val_loss: 0.8010 - val_accuracy: 0.5735 Epoch 2/50 586/586 [==============================] - 1455s 2s/step - loss: 0.5118 - accuracy: 0.7469 - val_loss: 0.4616 - val_accuracy: 0.7943 Epoch 3/50 13/586 […………………………] - ETA: 22:12 - loss: 0.5206 - accuracy: 0.7715 VM.Standard2.24: Epoch 1/50 586/586 [==============================] - 571s 970ms/step - loss: 0.7036 - accuracy: 0.6008 - val_loss: 0.6687 - val_accuracy: 0.6292 Epoch 2/50 586/586 [==============================] - 569s 970ms/step - loss: 0.5071 - accuracy: 0.7502 - val_loss: 0.4967 - val_accuracy: 0.7856 Epoch 3/50 586/586 [==============================] - 569s 971ms/step - loss: 0.4030 - accuracy: 0.8151 - val_loss: 0.3557 - val_accuracy: 0.8411 Epoch 4/50 14/586 […………………………] - ETA: 8:52 - loss: 0.3534 - accuracy: 0.8443 gpu 2.1 Epoch 1/50 586/586 [==============================] - 775s 1s/step - loss: 0.6922 - accuracy: 0.6149 - val_loss: 0.8216 - val_accuracy: 0.5463 Epoch 2/50 586/586 [==============================] - 771s 1s/step - loss: 0.5016 - accuracy: 0.7538 - val_loss: 0.5507 - val_accuracy: 0.7561 Epoch 3/50 82/586 [===>……………………..] - ETA: 10:30 - loss: 0.4451 - accuracy: 0.7918
SHAPE | TIME SPENT 1ST EPOCH (SECS) | CORES/GPUs |
VM.Standard.E2.8 | 1454 | 8 / 0 |
VM.Standard2.24 | 571 | 24 / 0 |
VM gpu 2.1 | 775 | 12 / 1 |
Macbook pro core i7 year 2017 | 13255 | – |
In future post maybe we’ll try bare metal shapes.
That’s all, hope it helps! 🙂